The Use of Design Specificity in Standardized Mean Difference for Analysis of High throughput RNA Interference Screens

نویسنده

  • Karol Kozak
چکیده

RNA interference (RNAi) high-content screening (HCS) enables massive parallel gene silencing and is increasingly being used to reveal novel connections between genes and disease-relevant phenotypes. The application of genome-scale RNAi relies on the development of high quality HCS assays. Strictly standardized mean difference (SSMD), introduced by Zhang et al. [1], provides a possibility for hit selection in HCS experiments. This method has relied on normal approximation, which works in the primary screens considering positive and negative controls. This paper describes a new extension of the SSMD, which integrates bioinformatics RNAi on-target analysis results for both the SSMD-based testing process and the use of SSMD as a ranking metric for hit selection by using additional controls generated from RNAi libraries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GUItars: A GUI Tool for Analysis of High-Throughput RNA Interference Screening Data

BACKGROUND High-throughput RNA interference (RNAi) screening has become a widely used approach to elucidating gene functions. However, analysis and annotation of large data sets generated from these screens has been a challenge for researchers without a programming background. Over the years, numerous data analysis methods were produced for plate quality control and hit selection and implemente...

متن کامل

Evaluation of a Novel Metric for Quality Control in an RNA Interference High Throughput Screening Assay

The application of genome scale RNA interference (RNAi) relies on the development of high quality RNAi high throughput screening (HTS) assays. An important quality control (QC) characteristic in an HTS assay is how well the positive controls, samples, and negative controls can be separated from each other in the assay. Signal-to-noise ratio, signal-to-background ratio, Z-factor and Z’-factor ha...

متن کامل

RNAi screening: new approaches, understandings, and organisms.

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from th...

متن کامل

Knocking down the obstacles to functional genomics data sharing

This week, Scientific Data published a collection of eight papers that describe datasets from high-throughput functional genomics screens, primarily utilizing RNA interference (RNAi). The publications explore host-pathogen dependencies, innate immune response, disease pathways, and cell morphology and motility at the genome-level. All data, including raw images from the high content screens, ar...

متن کامل

The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments.

RNA interference (RNAi) high-throughput screening (HTS) has been hailed as the 2nd genomics wave following the 1st genomics wave of gene expression microarrays and single-nucleotide polymorphism discovery platforms. Following an RNAi HTS, the authors are interested in identifying short interfering RNA (siRNA) hits with large inhibition/activation effects. For hit selection, the z-score method a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012